A field study of related video recommendations: newest, most similar, or most relevant?
Published in ACM RecSys, 2018
Many video sites recommend videos related to the one a user is watching. These recommendations have been shown to influence what users end up exploring and are an important part of a recommender system. Plenty of methods have been proposed to recommend related videos, but there has been relatively little work that compares competing strategies.
We describe a field study of related video recommendations, where we deploy algorithms to recommend related movie trailers. Our results show that recency- and similarity-based algorithms yield the highest click-through rates, and that the recency-based algorithm leads to the most trailer-level engagement. Our findings suggest the potential to design non-personalized yet effective related item recommendation strategies.